Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 38(3): e96-e103, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416449

RESUMO

ABSTRACT: Ferguson, J, Gibson, NV, Weston, M, and McCunn, R. Reliability of measures of lower body strength and speed in academy male adolescent soccer players. J Strength Cond Res 38(3): e96-e103, 2024-The Nordbord and ForceFrame represent a practical and time efficient means of assessing eccentric hamstring and isometric adductor strength in the large number of squads and players associated with youth soccer academies, yet measurement reliability in this population is unexamined. Therefore, over a period of 4 days, with no less than 24 hours and no more than 48 hours between trials, 37 players (age: 14.7 ± 0.8 years, stature: 168.7 ± 7.8 cm, mass: 57.7 ± 9.1 kg, and maturity offset: 0.8 ± 0.9 years) were assessed for eccentric hamstring strength (force, torque), isometric adductor strength (long and short lever positions), and 30-m sprint (5, 10, and 20-m splits), using the Nordbord, ForceFrame, and electronic timing gates, respectively, on 3 separate occasions. Relative reliability (intraclass correlation coefficient) was rated as good for all Nordbord (range: 0.86-0.89) and ForceFrame (0.78-0.85) measures and ranged from moderate (0.53) to excellent (0.93) for the speed measures, improving with increased distance. Absolute reliability (standard error of the measurement [%SEM]) ranged from 7 to 8% (Nordbord), 3 to 11% (ForceFrame), and 1 to 4% (sprints). Our data provide the first Nordbord and ForceFrame reliability estimates in adolescent soccer academy players. To interpret test sensitivity, practitioners are encouraged to interpret our estimates of absolute reliability against meaningful change values derived from personal experience and evidence-based knowledge and not against absolute or standardized thresholds.


Assuntos
Futebol , Humanos , Adolescente , Masculino , Reprodutibilidade dos Testes , Academias e Institutos , Estatura , Eletrônica
2.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175123

RESUMO

Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.


Assuntos
Cromatina , Vírus da Hepatite B , Cromatina/genética , Vírus da Hepatite B/genética , DNA Circular/genética , Nucleossomos , Fator de Ligação a CCCTC/genética
3.
Curr Opin Virol ; 55: 101257, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998396

RESUMO

Persistent virus infections are achieved when the intricate balance of virus replication, host-cell division and successful immune evasion is met. The genomes of persistent DNA viruses are either maintained as extrachromosomal episomes or can integrate into the host genome. Common to both these strategies of persistence is the chromatinisation of viral DNA by cellular histones which, like host DNA, are subject to epigenetic modification. Epigenetic repression of viral genes required for lytic replication occurs, while genes required for latent or persistent infection are maintained in an active chromatin state. Viruses utilise host-cell chromatin insulators, which function to maintain epigenetic boundaries and enforce this strict transcriptional programme. Here, we review insulator protein function in virus transcription control, focussing on CCCTC-binding factor (CTCF) and cofactors. We describe CTCF-dependent activities in virus transcription regulation through epigenetic and promoter-enhancer insulation, three-dimensional chromatin looping and manipulation of transcript splicing.


Assuntos
Cromatina , Infecções por Vírus de DNA , Infecções por Vírus de DNA/genética , DNA Viral/genética , Epigênese Genética , Humanos , Latência Viral/genética , Replicação Viral
4.
J Clin Microbiol ; 60(4): e0240821, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35369709

RESUMO

Genome sequencing is a powerful tool for identifying SARS-CoV-2 variant lineages; however, there can be limitations due to sequence dropout when used to identify specific key mutations. Recently, ThermoFisher Scientific has developed genotyping assays to help bridge the gap between testing capacity and sequencing capability to generate real-time genotyping results based on specific variants. Over a 6-week period during the months of April and May 2021, we set out to assess the ThermoFisher TaqMan mutation panel genotyping assay, initially for three mutations of concern and then for an additional two mutations of concern, against SARS-CoV-2-positive clinical samples and the corresponding COVID-19 Genomics UK Consortium (COG-UK) sequencing data. We demonstrate that genotyping is a powerful in-depth technique for identifying specific mutations, is an excellent complement to genome sequencing, and has real clinical health value potential, allowing laboratories to report and take action on variants of concern much more quickly.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Mutação , SARS-CoV-2/genética
5.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121140

RESUMO

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Sensibilidade e Especificidade
6.
Langmuir ; 38(8): 2590-2600, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166546

RESUMO

Covalent bonding is one of the most robust forms of intramolecular interaction between adhesives and substrates. In contrast to most noncovalent interactions, covalent bonds can significantly enhance both the interfacial strength and durability. To utilize the advantages of covalent bonding, specific chemical reactions are designed to occur at interfaces. However, interfacial reactions are difficult to probe in situ, particularly at the buried interfaces found in well-bonded adhesive joints. In this work, sum frequency generational (SFG) vibrational spectroscopy was used to directly examine and analyze the interfacial chemical reactions and related molecular changes at buried nylon/silicone elastomer interfaces. For self-priming elastomeric silicone adhesives, silane coupling agents have been extensively used as adhesion promoters. Here with SFG, the interfacial chemical reactions between nylon and two alkoxysilane adhesion promoters with varied functionalities (maleic anhydride (MAH) and epoxy) formulated into the silicone were observed and investigated. Evidence of reactions between the organofunctional group of each silane and reactive groups on the polyamide was found at the buried interface between the cured silicone elastomer and nylon. The adhesion strength at the nylon/cured silicone interfaces was substantially enhanced with both silane additives. SFG results elucidated the mechanisms of organo-silane adhesion promotion for silicone at the molecular level. The ability to probe and analyze detailed interfacial reactions at buried nylon/silicone interfaces demonstrated that SFG is a powerful analytical technique to aid the design and optimization of materials with desired interfacial properties.


Assuntos
Adesivos , Nylons , Adesivos/química , Proteínas/química , Elastômeros de Silicone , Análise Espectral/métodos
7.
PLoS Pathog ; 17(11): e1010032, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735550

RESUMO

The ubiquitous host protein, CCCTC-binding factor (CTCF), is an essential regulator of cellular transcription and functions to maintain epigenetic boundaries, stabilise chromatin loops and regulate splicing of alternative exons. We have previously demonstrated that CTCF binds to the E2 open reading frame (ORF) of human papillomavirus (HPV) 18 and functions to repress viral oncogene expression in undifferentiated keratinocytes by co-ordinating an epigenetically repressed chromatin loop within HPV episomes. Keratinocyte differentiation disrupts CTCF-dependent chromatin looping of HPV18 episomes promoting induction of enhanced viral oncogene expression. To further characterise CTCF function in HPV transcription control we utilised direct, long-read Nanopore RNA-sequencing which provides information on the structure and abundance of full-length transcripts. Nanopore analysis of primary human keratinocytes containing HPV18 episomes before and after synchronous differentiation allowed quantification of viral transcript species, including the identification of low abundance novel transcripts. Comparison of transcripts produced in wild type HPV18 genome-containing cells to those identified in CTCF-binding deficient genome-containing cells identifies CTCF as a key regulator of differentiation-dependent late promoter activation, required for efficient E1^E4 and L1 protein expression. Furthermore, our data show that CTCF binding at the E2 ORF promotes usage of the downstream weak splice donor (SD) sites SD3165 and SD3284, to the dominant E4 splice acceptor site at nucleotide 3434. These findings demonstrate that in the HPV life cycle both early and late virus transcription programmes are facilitated by recruitment of CTCF to the E2 ORF.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Regulação Viral da Expressão Gênica , Papillomavirus Humano 18/genética , Infecções por Papillomavirus/virologia , Splicing de RNA , Proteínas Virais/genética , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Genoma Viral , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Regiões Promotoras Genéticas , Replicação Viral
9.
PLoS Biol ; 19(4): e3001216, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914730

RESUMO

Lateral flow devices (LFDs) are quickly being implemented for use in large-scale population surveillance programs for SARS-CoV-2 infection in the United Kingdom. These programs have been piloted in city-wide screening in the city of Liverpool and are now being rolled out to support care home visits and the return home of University students for the Christmas break. Here, we present data on the performance of LFDs to test almost 8,000 students at the University of Birmingham between December 2 and December 9, 2020. The performance is validated against almost 800 samples using PCR performed in the University Pillar 2 testing lab and theoretically validated on thousands of Pillar 2 PCR testing results performed on low-prevalence care home testing samples. Our data show that LFDs do not detect infections presenting with PCR Ct values over 29 to 30 as determined using the Thermo Fisher TaqPath asssay. This may be of particular importance in detecting individuals that are either at the early, or late stages of infection, and reinforces the need for frequent, recurrent testing.


Assuntos
Teste Sorológico para COVID-19 , COVID-19/diagnóstico , Portador Sadio/diagnóstico , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Portador Sadio/epidemiologia , Humanos , Imunoensaio , Programas de Rastreamento , Prevalência , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Reino Unido/epidemiologia , Universidades
10.
Cell Microbiol ; 23(2): e13274, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006186

RESUMO

Hepatitis B virus (HBV) infection is of global importance with over 2 billion people exposed to the virus during their lifetime and at risk of progressive liver disease, cirrhosis and hepatocellular carcinoma. HBV is a member of the Hepadnaviridae family that replicates via episomal copies of a covalently closed circular DNA (cccDNA) genome. The chromatinization of this small viral genome, with overlapping open reading frames and regulatory elements, suggests an important role for epigenetic pathways to regulate viral transcription. The chromatin-organising transcriptional insulator protein, CCCTC-binding factor (CTCF), has been reported to regulate transcription in a diverse range of viruses. We identified two conserved CTCF binding sites in the HBV genome within enhancer I and chromatin immunoprecipitation (ChIP) analysis demonstrated an enrichment of CTCF binding to integrated or episomal copies of the viral genome. siRNA knock-down of CTCF results in a significant increase in pre-genomic RNA levels in de novo infected HepG2 cells and those supporting episomal HBV DNA replication. Furthermore, mutation of these sites in HBV DNA minicircles abrogated CTCF binding and increased pre-genomic RNA levels, providing evidence of a direct role for CTCF in repressing HBV transcription.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Elementos Facilitadores Genéticos , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Transcrição Viral , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA Viral/metabolismo , Epigenômica , Células Hep G2 , Hepatite B/virologia , Humanos , Mutação , RNA Viral , Replicação Viral
11.
Vet Res Commun ; 43(2): 91-97, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900113

RESUMO

Ovine herpesvirus-2 (OvHV-2) is the causative agent of the sheep-associated form of malignant catarrhal fever, a usually fatal lymphoproliferative disease of bison, deer and cattle. Malignant catarrhal fever is a major cause of cattle loss in Africa with approximately 7% affected annually; and in North America has significant impact on bison farming. Research into the mechanisms by which OvHV-2 induces disease in susceptible species has been hampered by a lack of a cell culture system for the virus. Ov2 is a bZIP protein encoded by OvHV-2. Proteins with bZIP domains in other herpesviruses, such as the Kaposi's sarcoma-associated herpesvirus K8 protein and the BZLF1 protein of Epstein-Barr virus are known to play important roles in lytic virus replication. Using a reporter based system, we demonstrate that Ov2 can modulate the activity of the major virus transactivator (Replication and Transcriptional Activator protein, RTA) to 1) drive expression of viral genes predicted to be required for efficient reactivation of the virus, including ORF49; and 2) differentially regulate the expression of the two virus encoded Bcl-2 homologues Ov4.5 and Ov9.


Assuntos
Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Regulação Viral da Expressão Gênica/genética , Proteínas Virais/metabolismo , Transativadores/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...